Basic covariant differential operators on hermitian symmetric spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformally Covariant Differential Operators: Symmetric Tensor Fields

We extend previous work on conformally covariant differential operators to consider the case of second order operators acting on symmetric traceless tensor fields. The corresponding flat space Green function is explicitly constructed and shown to be in accord with the requirements of conformal invariance. PACS: 03.70.+k; 11.10.Kk; 11.25.Hf; 11.30.Ly

متن کامل

Toeplitz Operators and Solvable C*-algebras on Hermitian Symmetric Spaces

Bounded symmetric domains (Cartan domains and exceptional domains) are higher-dimensional generalizations of the open unit disc. In this note we give a structure theory for the C*-algebra T generated by all Toeplitz operators Tf(h) := P{fh) with continuous symbol function ƒ G C(S) on the Shilov boundary 5 of a bounded symmetric domain D of arbitrary rank r. Here h belongs to the Hardy space H(S...

متن کامل

On the Principal Symbols of Kc-invariant Differential Operators on Hermitian Symmetric Spaces

Let (G, K) be one of the following classical irreducible Hermitian symmetric pairs of noncompact type: (SU(p, q), S (U(p) × U(q))), (Sp(n,R),U(n)), or (SO(2n),U(n)). Let GC and KC be complexifications of G and K, respectively, and let P be a maximal parabolic subgroup of GC whose Levi subgroup is KC. Let V be the holomorphic part of the complexifiaction of the tangent space at the origin of G/K...

متن کامل

Geometrical phases on hermitian symmetric spaces

For simple Lie groups, the only homogeneous manifolds G/K, where K is maximal compact subgroup, for which the phase of the scalar product of two coherent state vectors is twice the symplectic area of a geodesic triangle are the hermitian symmetric spaces. An explicit calculation of the multiplicative factor on the complex Grassmann manifold and its noncompact dual is presented. It is shown that...

متن کامل

Differential operators on equivariant vector bundles over symmetric spaces

Generalizing the algebra of motion-invariant differential operators on a symmetric space we study invariant operators on equivariant vector bundles. We show that the eigenequation is equivalent to the corresponding eigenequation with respect to the larger algebra of all invariant operators. We compute the possible eigencharacters and show that for invariant integral operators the eigencharacter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales scientifiques de l'École normale supérieure

سال: 1985

ISSN: 0012-9593,1873-2151

DOI: 10.24033/asens.1494